Ratios.
Vocabulary

A ratio compares values.

A ratio says how much of one thing there is compared to another thing.

There are 3 blue squares to 1 yellow square
Ratios can be shown in different ways:
Using the ":" to separate the values: 3:1

Instead of the ":" you can use the word "to": 3 to 1

$$
\text { Or write it like a fraction: } \frac{3}{1}
$$

A ratio can be scaled up (установлений в масштабі):

Here the ratio is also 3 blue squares to 1 yellow square, even though there are more squares.

- Using Ratios

The trick (прийом) with ratios is to always multiply or divide the numbers by the same value.

Example:

4:5 is the same as $4 \times 2: 5 \times 2=8: \mathbf{1 0}$

- "Part-to-Part" and "Part-to-Whole" Ratios

The examples so far have been "part-to-part" (comparing one part to another part). But a ratio can also show a part compared to the whole lot.
Example: There are 5 pups, 2 are boys, and 3 are girls

Part-to-Part:

The ratio of boys to girls is $2: 3$ or $2 / 3$
The ratio of girls to boys is $3: 2$ or $3 / 2$

Part-to-Whole:

The ratio of boys to all pups is $2: 5$ or $2 / 5$
The ratio of girls to all pups is $3: 5$ or $\mathbf{3} / 5$

1. What is the ratio of purple frogs to yellow frogs?

$\begin{array}{llllll} & 4 \text { to } 6 \quad 6 \text { to } 4 \quad & 2 \text { to } 4 \quad \bigcirc \quad 6 \text { to } 2\end{array}$
2. What is the ratio of green cones to purple cones?

6 to $1 \quad 5$ to $1 \quad 1$ to 6 to 6
3. What is the ratio of blue paper clips to total paper clips?

$$
4 \text { to } 6 \quad 2 \text { to } 4 \bigcirc 6 \text { to } 2 \bigcirc 2 \text { to } 6
$$

4. What is the ratio of brown octagonal prisms to total octagonal prisms?

$$
1 \text { to } 2 \bigcirc 2 \text { to } 3 \bigcirc 1 \text { to } 3 \bigcirc 2 \text { to } 1
$$

5. Complete the ratio table.

a) | 5 | 6 |
| :---: | :---: |
| | 12 |
| 15 | 18 |
| 20 | 24 |
| 25 | 30 |

b)

1	3
2	6
3	
4	12
5	15

6. James's Pizzeria made 27 thin-crust pizzas and 22 thick-crust pizzas. What is the ratio of the number of thick-crust pizzas to the number of thin-crust pizzas?

$$
\begin{array}{llllll}
\circ & 27: 49 & 22: 27 & \text { 49:27 } & \text { 22:44 }
\end{array}
$$

7. There are 20 students sitting on the bleachers and 27 students sitting on the floor. What is the ratio of the number of students sitting on the floor to the number of students sitting on the bleachers?

$$
\begin{array}{llllll}
\hline 27: 20 & \text { (17:20 } & \circ & 27: 47 & \bigcirc & 20: 27
\end{array}
$$

8. 9 of the tables at Aldo's Italian Restaurant are full and the other 1 table is empty. What is the ratio of the number of full tables to the number of empty tables?

$$
\begin{array}{llllll}
9: 1 & 1: 18 & & 20: 9 & 18: 1
\end{array}
$$

9. An amusement park sold 20 child tickets. The other 30 tickets it sold were adult tickets. What is the ratio of the number of child tickets to the number of adult tickets?

$$
\begin{array}{lllll}
\hline 20: 30 & 50: 30 & 30: 20 & 50: 20
\end{array}
$$

10.8 students are going on a field trip and 25 students are staying at school. What is the ratio of the number of students who are staying at school to the number of students who are going on the field trip?

```
8:25 O 33:8 ○ 25:8 8:33
```


11. Are these ratios equivalent?

a) $\frac{1}{2}$ and $\frac{7}{12}$

```
yes no
```

b) 4
$\frac{5}{5}$ and $\frac{8}{10}$
\bigcirc yes \quad no
c) 2:4 and 10:12
yes no
d) $\mathbf{1}$ to $\mathbf{3}$ and $\mathbf{3}$ to $\mathbf{1 5}$
yes \quad no
Proportion says that two ratios (or fractions) are equal. Example:

So 1-out-of-3 is equal to 2-out-of-6

The ratios are the same, so they are in proportion.
When things are "in proportion" then
their relative sizes are the same.

Here you can see that the ratios of head length to body length are the same in both drawings.
So they are proportional.
Making the head too long or short would look bad!
13

$$
\frac{10}{20}=\frac{15}{30}
$$

- Working With Proportions

NOW, how do we use this?
Example: you want to draw the dog's head, and would like to know how long it should be:
Let us write the proportion with the help of the 10/20 ratio from above:

$$
\frac{?}{42}=\frac{10}{20}
$$

Now we solve it using a special method:
Multiply across the known corners, then divide by the third number And you get this:

$$
?=(42 \times 10) / 20=420 / 20=21
$$

So you should draw the head 21 long.

- Using Proportions to Solve Percents

A percent is actually a ratio! Saying " 25% " is actually saying " 25 per 100":

$$
25 \%=\frac{25}{100}
$$

We can use proportions to solve questions involving percents.
First, put what you know into this form:

$$
\frac{\text { Part }}{\text { Whole }}=\frac{\text { Percent }}{100}
$$

Example: what is $\mathbf{2 5 \%}$ of 160 ?

The percent is 25 , the whole is 160 , and we want to find the "part":

$$
\frac{\text { Part }}{160}=\frac{25}{100}
$$

Find the Part:
Example: what is $\mathbf{2 5 \%}$ of 160 (continued)?

$$
\frac{\text { Part }}{160}=\frac{25}{100}
$$

Multiply across the known corners, then divide by the third number:

$$
\text { Part }=(160 \times 25) / 100=4000 / 100=40
$$

Answer: 25\% of 160 is 40.

Note: you could have also solved this by doing the divide first, like this:

$$
\text { Part }=160 \times(25 / 100)=160 \times 0.25=40
$$

Either method works fine.

We can also find a Percent:
Example: what is $\$ 12$ as a percent of $\$ 80$?
Fill in what you know:

$$
\frac{\$ 12}{\$ 80}=\frac{\text { Percent }}{100}
$$

Multiply across the known corners, then divide by the third number. This time the known corners are top left and bottom right:

Answer: $\$ 12$ is 15% of $\$ 80$
12. Complete the following statement.
75% of $\$ 4=\$$
55% of $\$ 88=\$$
25% of $\$ 60=\$$
13.Fill in the missing number to complete the proportion.
a)

$$
\underline{2}=\frac{6}{12}
$$

b)

c)
$\frac{\square}{3}=\frac{6}{18}$

14.Fill in the missing number to complete the proportion.
a) $2: 1=\square: 4$
b) 3 to $2=\square$ to 8
c) to $3=8$ to 12
15.Aaron took a total of 9 quizzes over the course of 3 weeks. After attending 6 weeks of school this quarter, how many quizzes will Aaron have taken in total? Solve using unit rates.
quizzes
16. Becky walked a total of 9 kilometers by making 3 trips to school. How many trips will Becky have to make in all to walk a total of 12 kilometers? Solve using unit rates.

17.Mahiya prepared 12 kilograms of dough after working 6 hours. How many hours did Mahiya work if she prepared 16 kilograms of dough? Solve using unit rates.
hours
18. Kadisha read a total of 14 books over 7 months. After belonging to the book club for 8 months, how many books will Kadisha have read in all? Solve using unit rates.

19.Blake's graduation picnic will cost $\$ 16$ if it has 8 attendees (учасник). At most how many attendees can there be if Blake budgets a total of $\$ 20$ for his graduation picnic? Solve using unit rates.

- Directly Proportional and Inversely Proportional

Directly proportional: as one amount (кількість) increases, another amount increases at the same rate.

Inversely proportional:
when one value decreases at the same rate that the other increases.

